

Thank You for Attending Today's Webinar:

Tips for Collecting Better IH Data – Anything That Could Go Wrong Will Go Wrong... Unless You are Prepared

Your Host

Matt DeLacluyse
Operations Mgr
RAECO Rents
mattd@raecorents.com

Featured SpeakerKay Rowntree
Industrial Hygiene Sciences

Tips for Collecting Better IH Data -Anything That Can Go Wrong Will Go Wrong... Unless You are Prepared

Kay Rowntree- MS, CIH Industrial Hygiene Sciences LLC May, 2021

©Copyright 2021 by Industrial Hygiene Sciences LLC

Quality IH Data Requires Good Preparation

- A sound sampling strategy is critical to success
- Know how to use the sampling equipment
- Understand the limitations of the equipment and the data collected
- Allocate time to make observations during the sampling process
- Determine how the results of the sampling will be communicated to management and employees

Developing a Sampling Strategy-Sampling Considerations

- What is the goal of the sampling?
 - Compliance?
 - Evaluation of controls?
 - Identification of sources/exposure drivers?
- What should be sampled?
 - Have agents been well identified?
 - Do methods exists?
 - Are there specific tasks that should be assessed?
 - What criteria will be used for evaluating results?

- When should you sample?
 - Typical?
 - Worst case?
 - Unusual occurrences?
 - Seasonal variations?
- Who gets sampled?
 - Representative?
 - Concerned employees?
 - Cooperative employees?
- Who will do the sampling?
 - Does this person have adequate knowledge and proficiency?

What Criterion Will Be Used?

- There are many different Occupational Exposure Limits (OELs) to use for comparison
 - They are NOT all the same
 - Sampling methods or set-up of the sampling equipment may vary depending on the OEL used
 - Identify which OEL is appropriate for the exposures
- If taking compliance samples, read the applicable OSHA Standard(s)
 - Some expanded health standards specify the sampling methods, length of samples & selection of jobs to be sampled
 - Be aware that some State OSHA plans have PELs that are different than Federal OSHA PELs
- OELs apply to personal breathing zone samples
- OELs are for noise are especially confusingthere are 3 types

OEL Variations

- Regulatory vs. recommended
 - OSHA PELs are the regulatory limits
 - All others (NIOSH RELS, ACGIH TLVs, OARS WEELs, manufacturer's limits or other countries limits) are recommended limits in the US
- Time period the OEL applies to
 - TWA (Time Weighted Average)
 - STEL (Short Term Exposure Limit)
 - C (Ceiling)
 - These are NOT interchangeable numbers
- Chemical or physical form
 - Fume or dust
 - Particle size: "Total", respirable (R), inhalable (I) or thoracic (T)
 - Oxides
 - Solubility
 - Compounds
 - Valence state for metals

Step 1- Identify Substances

- Obtain recent SDSs to ID substances
 - Check Sections 3 & 8 for ingredients
 - Verify actual use of product when on-site
- Determine if there an OEL & sampling method for the substance(s)
 - Use the CAS# to ensure you get the right match
- If you are using a direct reading instrument, ID sensor interferences and check to see if they may be present in the workplace

What Can Go Wrong

- Find out that the
 - SDS doesn't match what is actually used
 - The substance is no longer used
 - The formulation has changed
 - End result=You may have the wrong sample media, pumps or sensor
- May overlook the presence of trace ingredients that have significant toxicity
- Misunderstanding of chemical names
- Increased costs due to
 - More/different analytes requiring analysis
 - Second visit to get it right

Step 2- Understand the Processes

- ID production/product variations that may impact exposures (if not familiar with the operations, check out the company website to see what is made)
- Determine how the substance becomes airborne
- What processes are used to make the product?
- Are byproduct(s) formed?
- Are there steps in process that may create short, but high, exposures?
- How often is the employee exposed to the substance, how long do the "episodes" last and when do the exposure occur?
- ID if there is confined or restricted space usage
- What cleaning methods are used during production and for housekeeping?
- How is the product packaged?
- Are there days or times of the month to avoid sampling?

Focus Points That May Impact Exposures

- Abrasive processes that create dust
- Aerosolization of liquids 1
- Dilutions
- - Dry handling of solid materials
 - Container (especially bag) opening
 - Weighing
 - Scooping
 - Dumping/transfers
- Dry sweeping or brushing 1
- Heating of materials 1
- Indoor sources of combustion 1
- Manual mixing/blending/filling
- Use of compressed air

Common Examples of Where the Details Really Matter

Painting/Coating/Gluing Operations

- Multiple products are often used (primers, topcoats, catalysts/hardeners, gun flushes, wipe down solvents, thinners/reducers)
- Job shops and custom work often have more variations in substances used
- "Water" based and "low" VOC don't mean much from an IH standpoint
- Lab offered solvent scans may not include all of the solvents present in the products used
- High volatility solvents may necessitate lower sample volumes to prevent breakthrough or use of higher capacity sorbent tubes
- Method of application matters-passive samplers can get clogged up during spraying
- Use of respirators with hoods/helmets makes placement of sampling device complicated

Welding & Thermal Cutting

- The source of most welding fume is the wire or stick used-get the SDS for it
- The welding or cutting method can greatly impact the emissions generated
- Hexavalent chromium samples have to be collected separately from other metals
- Surface coatings can release additional hazardous chemicals

Step 2-What Can Go Wrong?

- You may have the wrong sample media, pumps or sensor for the way the substance is applied/used
- May not get a representative sample
- Production variations are a major reason exposures vary
 - You have to observe and understand the variations and determine if they impact the interpretation of results

- Significant exposures may be missed
 - Off-shift work is often ignored or misunderstood
- The sample time may not encompass high exposure tasks
 - Can easily happen with shifts longer than 8 hours
 - If doing short term samples, it is easy to miss the highest exposures unless you know when they occur

Step 3- Selecting People

- ID number of employees performing the task and potential variations in their tasks/procedures/controls
- Determine when exposures occur
- ID shift start & end times for each employee sampled
- Where do they work?
- Is PPE worn that may affect sampling procedures?

What Can Go Wrong

- The wrong employee is sampled
- Not enough employees are sampled
- Equipment may not handle cold weather if employees work outside in the winter
- Significant amount of sample time is missed because of shift start/end time "confusion"
 - Sample time is almost always lost at the beginning & end of the shift
 - If employees work remotely, in different buildings or are scattered across large areas, sample time can be lost (and time for observations may be reduced)
 - Opportunities to maximize sample time can be missed with staggered shifts
- PPE may interfere with placement of sampling equipment

Step 4- Selecting the Sampling Method(s)

- Consult lab/lab guides for the appropriate sampling method
- Obtain correct media and accessories
- Determine analyte compatibility if multiple analytes will be collected on a single collection device
- If using filters, determine if they are used open or closed faced or if size selective devices are needed
- If using passive samplers, determine if aerosolized material could clog up membrane-if so use an active sampling method
- Obtain correct sorbent tube holder
- Determine if the media creates a back pressure that exceeds the capability of the pump
- Determine if media has special storage requirements
- Obtain pumps and calibrators that fit the flow rate range(s) used
- Obtain correct diameter tubing to connect media/tube holder to the pump inlet
- Order more media than you need for errors, field blanks, multiple samples and surprises
- Obtain battery chargers or proper batteries

ANALYTE		REFERENCE METHOD				7		
	SAMPLING MEDIA		MIN VOLUME	MAX VOLUME	FLOW RATE	COMMENTS	COMPAT	CAS#
Acetic acid	6	OSHA ID-186SG IC	10	240	.25	Ship on ice		64-19-7
Acetic anhydride	111	OSHA 102(GC)	3	7.5	0.05	Sample open faced, 1 month shelf life, ship on ice		108-24-7
Acetone	45	OSHA 69(GC)	1	3	0.05		A	67-64-1
Acetone	128	GC FID In-house					A	67-64-1
Acetonitrile	2	NIOSH 1500/1501(GC)	1	12	0.2	Submit as separate sample		75-05-8
Acetonitrile	128	GC FID In-house				Submit as separate sample		75-05-8
Acetophenone	8	OSHA PV 2003(GC)	1.5	12	0.1			98-86-2
Acid Mist Scan	6	OSHA ID-165SG(IC)	3	100	0.5	See Scan list in back of guide		
Acids(mineral)	6	NIOSH 7903(IC)	3	100	0.5			
Acrolein	10	OSHA 52(GC)	3	48	0.1	Sample for 24 L if also for formaldehyde. Ship on Ice.		107-02-8
Acrylamide	116	OSHA PV 2004(GC)	15	120	1			79-06-1
Acrylate Scan	112	OSHA 89(GC)	1.5	12	0.2	See Acrylate Scan list at back of guide.		
Acrylic acid	121	OSHA PV2005 (LC)	12	24	0.1	2 tubes in series		79-10-7
Acrylonitrile	1	OSHA 37/NIOSH 1604(GC)	7.5	20	0.2	Submit as separate sample		107-13-1
Adipic acid	4	HPLC In-house	10	100	0.2			124-04-9
Alcohol Scan	174	OSHA 100 (GC)	0.75	6	0.05	See Alcohol Scan list at back of guide.		
Aldehydes scan	138	EPA TO11A(HPLC)	15	500	0.5-1.5	Ship on ice. See Aldehyde scan list in back of guide		
Aldrin	4	OSHA 67(GC)	60	480	1		E1	309-00-2
Alkaline dust		Call lab for details		960		Call lab for details		
Allyl isothiocyanate	1	NIOSH 1500/1501(GC)	1	12	0.2	Submit as a separate sample		57-06-7
Aluminum	14	NIOSH 7303(ICP)	100	960	2			7429-90-5
Amine Scan						See Various Amine lists at back of guide.		

Step 4-What Can Go Wrong?

- You don't have the correct media or media processing items
- You can't connect the sample media or sorbent tube holder to the pump or calibrator
- You can't field calibrate if the device doesn't cover the flow range(s) needed
- Things will happen and if you don't have enough replacement media, then this opportunity to sample is gone
- If open faced samples are collected closed faced, actual exposures may be underestimated
- Membrane of passives samplers gets covered up
- The sample results cannot be compared to an exposure limit because the wrong sampling device is used
 - This is especially an issue with size selective sampling
 - Also an issue with noise sampling

Step 5- Select Appropriate Flow Rate & Sample Time

- Determine the flow rate needed
 - Lab guides/staff/published methods can provide the recommended flow rate and sample volume for the analytical method
 - Flow rate choice directly impacts sample volume & sample time
 - Some methods have flow rate ranges
 - Size selective devices use a specific flow rate and should not be altered
- Determine the sample volume needed
 - Flow rate (lpm) X sample time (minutes) = sample volume (liters)
 - The minimum sample volume is critical to get reasonable detection limits
 - The maximum sample volume is critical to prevent media overloading, bypass or inadequate derivatization
 - Volumes are based on exposures around the OEL so there is wiggle room within published flow rates & sample volumes but you need to know what you are doing to vary them

ANALYTE		REFERENCE METHOD				7		
	SAMPLING MEDIA		MIN VOLUME	MAX VOLUME	FLOW RATE	COMMENTS	COMPAT	CAS#
Acetic acid	6	OSHA ID-186SG IC	10	240	.25	Ship on ice		64-19-7
Acetic anhydride	111	OSHA 102(GC)	3	7.5	0.05	Sample open faced, 1 month shelf life, ship on ice		108-24-7
Acetone	45	OSHA 69(GC)	1	3	0.05		A	67-64-1
Acetone	128	GC FID In-house					A	67-64-1
Acetonitrile	2	NIOSH 1500/1501(GC)	1	12	0.2	Submit as separate sample		75-05-8
Acetonitrile	128	GC FID In-house				Submit as separate sample		75-05-8
Acetophenone	8	OSHA PV 2003(GC)	1.5	12	0.1			98-86-2
Acid Mist Scan	6	OSHA ID-165SG(IC)	3	100	0.5	See Scan list in back of guide		
Acids(mineral)	6	NIOSH 7903(IC)	3	100	0.5			
Acrolein	10	OSHA 52(GC)	3	48	0.1	Sample for 24 L if also for formaldehyde. Ship on Ice.		107-02-8
Acrylamide	116	OSHA PV 2004(GC)	15	120	1			79-06-1
Acrylate Scan	112	OSHA 89(GC)	1.5	12	0.2	See Acrylate Scan list at back of guide.		
Acrylic acid	121	OSHA PV2005 (LC)	12	24	0.1	2 tubes in series		79-10-7
Acrylonitrile	1	OSHA 37/NIOSH 1604(GC)	7.5	20	0.2	Submit as separate sample		107-13-1
Adipic acid	4	HPLC In-house	10	100	0.2			124-04-9
Alcohol Scan	174	OSHA 100 (GC)	0.75	6	0.05	See Alcohol Scan list at back of guide.		
Aldehydes scan	138	EPA TO11A(HPLC)	15	500	0.5-1.5	Ship on ice. See Aldehyde scan list in back of guide		
Aldrin	4	OSHA 67(GC)	60	480	1		E1	309-00-2
Alkaline dust		Call lab for details		960		Call lab for details		
Allyl isothiocyanate	1	NIOSH 1500/1501(GC)	1	12	0.2	Submit as a separate sample		57-06-7
Aluminum	14	NIOSH 7303(ICP)	100	960	2			7429-90-5
Amine Scan						See Various Amine lists at back of guide.		

Step 5-What Can Go Wrong?

- You don't have enough media to cover the shift
- The detection limit is above the OEL or Action Level making exposure judgments dicey
- Too much breakthrough on the sorbent tube or filter invalidating the sample
- Underestimate exposures when using treated media because chemical is not completely derivative
- Wasted time and money by having to do too many samples to cover a shift
- Using the wrong flow rate for size selective devices, invalidating the sample

Step 6- Tools & Calibration

- Useful tools to have tools on hand
 - Duct tape, painter's tape
 - Screwdriver/other tools to open, adjust or fix equipment
 - Timer/clock (adjust clock on equipment if coming from another time zone)
 - Alligator clips for tubing (holds tubing in place on employee)
 - Belts or vest.
- Method of recording data (paper or electronic forms)
- Play with the equipment if you are not familiar with it
- Inspect equipment and media
- Prepare batteries
- Calibrate each piece of equipment before sampling
 - For pumps/media sampling, calibrate with the media in line
 - Some media require an adaptor to calibrate
 - Inspect equipment and tubing
 - Record calibration data
 - Plan for the time to do this
- Zero or clear stored data if necessary before sampling
- For noise dosimeters, make sure setting are correct

What Can Go Wrong

- Incomplete battery charging shortened sample times
- Damaged media -leaks
- Unacceptable data because of calibration deficiencies
- Lack of electronic or paper documentation can come back to haunt you
- Exceeding memory capacity of instrument can lead to data truncation or to pump shut-off
- Problems on-site because you don't have good way for the employee to wear the equipment
- Shortened sample time trying to calibrate or fix problems if you wait until the last minute

Step 7- On-Site Equipment Placement

- Have the jobs (people) pre-identified but always be prepared to adjust-have a back-up plan if employee refuses to wear equipment or is absent
- Be prepared to show up at the shift start
- Explain to the employee what you are doing-keep it simple
- Collection device placement
 - In the breathing or hearing zone (use two tubing contact points)
 - OUTSIDE a respirator helmet or hood, preferably out of the air outflow
 - Under the welding helmet for welding fume samples
 - On the outermost layer of clothing (may change during shift)
 - Place area samples in safe, stable places
- Pump and tubing placement
 - Usually placed on waistband or in a vest pocket
 - Watch out for common reasons tubing kinks at pump inlet
 - Sit-down jobs (chairs or seats)
 - Air line/PAPR belts, fall protection
 - Weight

Pros of central location at shift start

- Likely quieter
- Can hook up a lot of people quickly
- Can explain process once to group

Pros of job –site location at shift start

- Can see what PPE is used & work around/with it
- Can verify it's the correct job/person to sample

Step 7-What Can Go Wrong?

- GPS or Bluetooth equipment capability is no substitute for doing observations
- You miss sample time and perhaps important exposure because you don't want to get up early
- Employee thinks device is spying on them and takes it off or alters his/her behavior
- Collection device or microphone placement issues
 - Gets covered up by clothing, vests, PPE (e.g. protective suits, coats & jackets)
 - Tubing gets dislodged
 - Placement gets changed at breaks
- Pump flow faults when tubing gets kinked
 - Leads to loss of sampling time
 - Salvagability of sample depends on what is known about the flow faults
- Uncooperative employees may disrupt the sampling
- Employee gets annoyed by the equipment or tubing and takes it off
- Equipment /media falls off employee
- Area sample equipment gets damaged

Oops- this is what happens to a pump that falls off an employee and ends up in a foundry shakeout system!

Step 8- Observations

TWA Cr+6 Exposures in ug/m3 for SS Welders Over 6 Years of Data Collection 40 35 30 25 10 1 3 5 7 9 1113151719212322772931333373941434474951535557596163656769717375

- Why?
 - Numbers without context are pretty useless
 - How can variability, sample representativeness and sample quality be explained without observational info/data?
- Plan to spend time observing
 - Each employee's tasks & work practices
 - Sampling equipment
 - PPE usage
 - Controls & environmental conditions
 - Process disruptions/unusual happenings
 - What happens to equipment at breaks

- Processes info
 - Parts made
 - Substances actually used
 - Frequency and length of use
 - Tools and equipment used
 - Production numbers/output
- Be prepared to deal with issues
 - Employee leaves for the day
 - Switch to another employee doing same job?
 - Sample device problems
 - Pump stoppages-some fixable, others not
 - Collection device covered up or moved
 - Tubing disconnects from pump
 - Media becomes overloaded and stops pump
 - Damaged tubing
 - Damaged sample media (sparks from high energy hot processed & abrasive blasting can be wreck filters)
 - Filter gets put on backwards after falling off

Step 9- Post Sampling

- Inspect media and equipment
- If applicable, download data from noise dosimeters or direct reading instruments
 - Use significant digits and/or accuracy range of instrument
- Post calibrate sample pumps and media
- Prepare a field blank & submit with samples
- Calculate sample volumes based on sample length and average flow rate
 - Use significant digits
- Complete chain of custody/ lab submission forms
 - Be sure to designate the chemical and physical form of the analyte (see slide 4)-its not the lab's job to figure this out
- Ship samples observing any special handling requirements

Step 10- Interpreting Results

- Review lab reports to determine if there are any laboratory notes about the samples
- If applicable, calculate TWAs
 - Use significant digits
- Compare results to the applicable OELs
 - Match the OEL to the substance sampled and time frame of the sample
- Before making exposure judgments......
 - Review observational data to determine what the results actually represent and if there were events that may have impacted the sample results
 - Identify data limitations and whether they impact the results
- Communicate results to management and if applicable, to employees

Step 10-What Can Go Wrong?

- Calculating TWAs incorrectly
 - For samples less than 480 minutes, zero exposure is assumed for the non-sampled time.
 - This can significantly underestimate the actual exposures and should ONLY be done if you know that there was a high chance the exposure really was "zero"
- Comparing the results to the wrong OELs (see slide 4 for areas of pitfalls)
- Wrong comparisons for noise data
 - OSHA Hearing Conservation (Action Level) comparisons: 5 dB exchange rate, 80 dB threshold, 90 dBA criterion level
 - OSHA PEL comparisons: 5 dB exchange rate, 90 dBA threshold, 90 dBA criterion level
 - ACGIH/NIOSH REL comparisons: 3 dB exchange rate, 8o dBA threshold, 85 dBA criterion level
 - All use slow setting of instrument
- Not acknowledging the limitations of the data
- Relying on one set of data to make broad judgments about the exposures

Summary

- Set aside adequate time for prep work, set-up, observations, take-down, sample prep and interpretation of results
- Prepare a good sampling strategy that will give you quality, representative data
- Verify information provided to you
- Become very familiar with how to do the sampling so you look like an "expert"
- Always calibrate the equipment
- MAKE OBSERVATIONS, MAKE OBSERVATIONS, MAKE OBSERVATIONS
- Document sampling info & process/employee info
- Identify the limitations of the data
- Don't overinterpret the numbers
- Expect variations in exposure data
- Be respectful of the employees and make the process as comfortable for them as you can

Thank You!

Kay Rowntree, CIH
Industrial Hygiene Sciences,
LLC
602 Fox Knoll Drive
Waterford, WI 53185
262-534-2554
kayihs@tds.net
www.ihsciences.com

Get Social with RAECO

blog.raecorents.com

www.linkedin.com/company/raeco-rents

@RaecoRents

www.youtube.com/user/RaecoRentsVideos

Upcoming Webinar:

To be Announced...

Catch up on previous webinars at: raecorents.com/training-center